If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-40=15
We move all terms to the left:
5x^2-40-(15)=0
We add all the numbers together, and all the variables
5x^2-55=0
a = 5; b = 0; c = -55;
Δ = b2-4ac
Δ = 02-4·5·(-55)
Δ = 1100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1100}=\sqrt{100*11}=\sqrt{100}*\sqrt{11}=10\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-10\sqrt{11}}{2*5}=\frac{0-10\sqrt{11}}{10} =-\frac{10\sqrt{11}}{10} =-\sqrt{11} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+10\sqrt{11}}{2*5}=\frac{0+10\sqrt{11}}{10} =\frac{10\sqrt{11}}{10} =\sqrt{11} $
| x*0.09=45 | | 14x+8=18x+6 | | 25=28-4n | | a=2*2.5/0.3E+1 | | X2-13x+6,25=0 | | 16x^2+32x-29=0 | | X^3+6x=5x | | 2x+7=7x=3 | | -6x-2=18-2x | | X+(1/10x)=100 | | 9(n+8)=8•7 | | 3(3x-4)=-39 | | 2x^2−14x+12=0 | | 8(-2p+3)=152 | | x4+x3+x2+x-4=0 | | 2x2−14x+12=0 | | 3x−16=2 | | |3x-1|+4=10 | | -404=-5-7(1+7x) | | 5x-2.4=3.9 | | 5x-2.4=2.4 | | 198=-6(7p+2) | | 9x+4=12x+2 | | 8(7-7x)=448 | | -5(-7p+6)=145 | | X^2+7x+14=x+2 | | 55h+275=440. | | X^2+6x+12=x+2 | | 3x2+x-4=0 | | 2(7-6k)=86 | | 3x2/4=12 | | n÷9+125=132 |